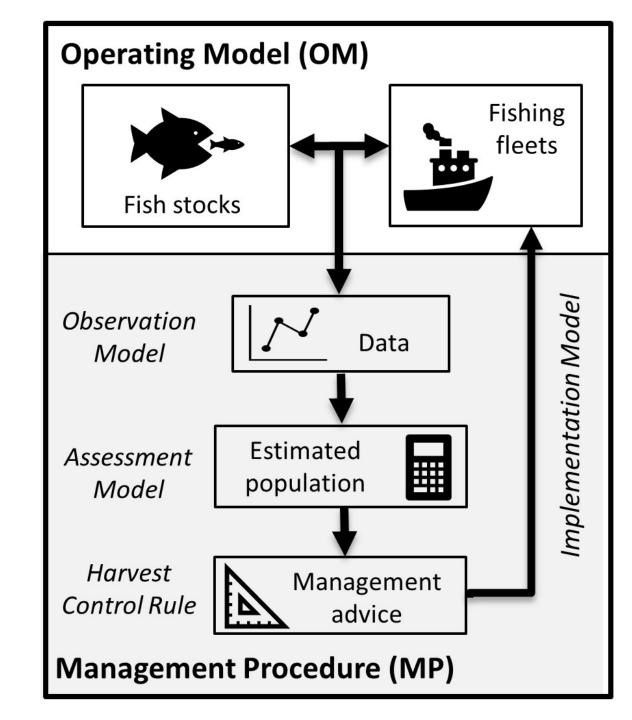
Status of the Bluefin tuna Management Strategy Evaluation

Principle, uncertainty grid & operating models, performance statistics, various candidate harvest strategies

Eider Andonegi

AZTI – Marine Research


Joint MEDAC and SWWAC meeting - Workshop on Eastern Bluefin tuna Harvest Strategy, 19th July, 2021.

Management Strategy Evaluation What is that?

MSE

- A simulation approach that formalizes the introduction of uncertainty into the decisionmaking process
- The objective is to identify the management strategies that are robust to uncertainty before they are put in place

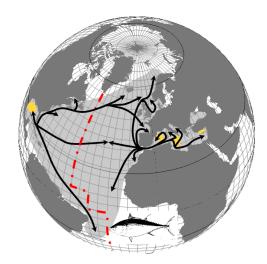
MSE - Steps

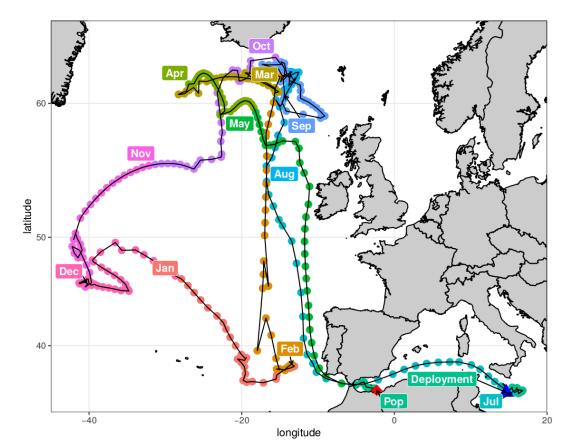
- Identification of management objectives
- Identification of statistical indicators of performance
- Hypotheses for operating models (OMs)
- Conditioning of the OMs using data and knowledge
- Weighting of hypotheses depending plausibility
- Identifying candidate management procedures (MPs) / harvest strategies (HS)
- Projecting the OMs forward in time using the MPs as a feedback controller: impact of management
- Identifying the elements of MPs that best meet management objectives

MSE for Atlantic BFT

Some background on Bluefin

Atlantic Bluefin tuna (Thunnus thynnus; ABFT) is challenging

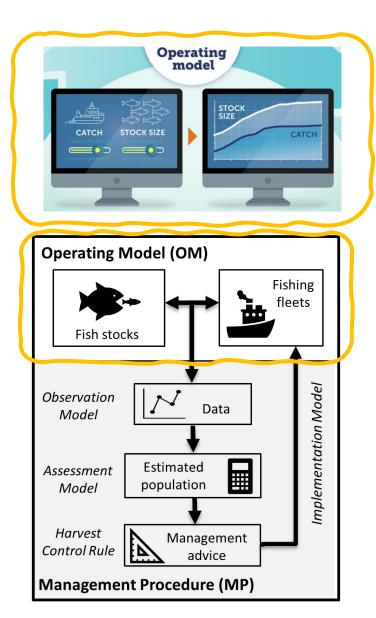

- Emblematic large migratory species: complex spatial dynamics
- Migration in and out of the Med, not fully understood

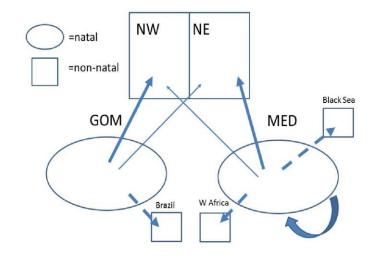

Exploitation

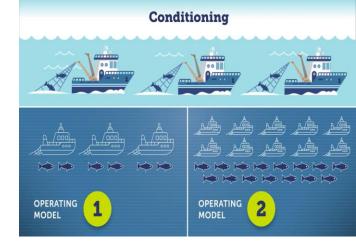
- Very valuable fishery
- Complex exploitation history
- International fishery >20 countries
- Specific exploitation process (Fattening farms)

Management

- Managed in two independent stocks: East and West
- Stocks are mixing, pop structure still under research
- Western fishery catch eastern fish
- 90% of total catch are Eastern, Western smaller stock
- 60% of East TAC = Med Purse seiners

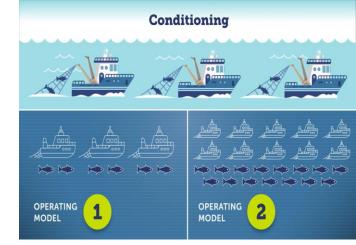



BFT MSE – How is it organized?

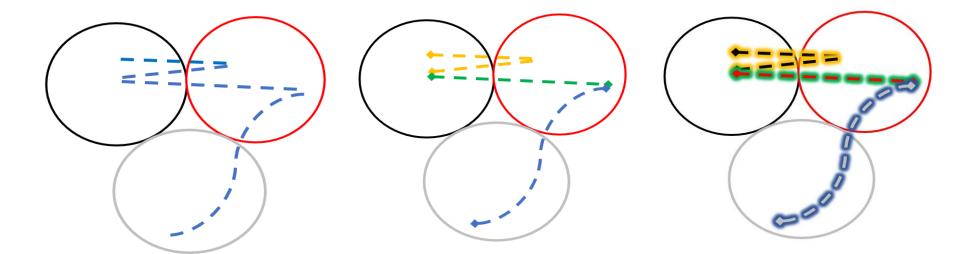

- Funded within the ICCAT research program (GBYP)
- One contractor in charge of the implementation
- Developed a complete R package
- Small technical group that reports to the BFT Group, which makes
 - the key decisions

BFT MSE – The Operating Model(s) - OM

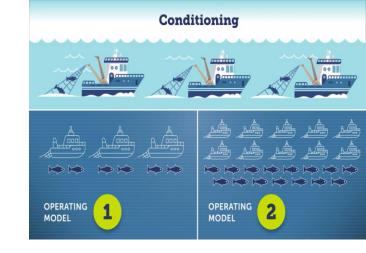
- Simulates the real stock and the fishery under certain hypothesis about their dynamics and interactions.
- Modifiable Multi-stock Model ('M3') age structured.
- Equations complicated by the quarterly temporal structure.

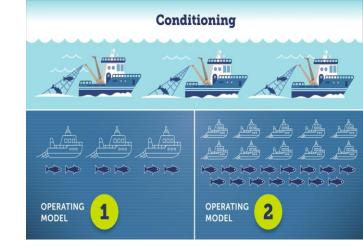


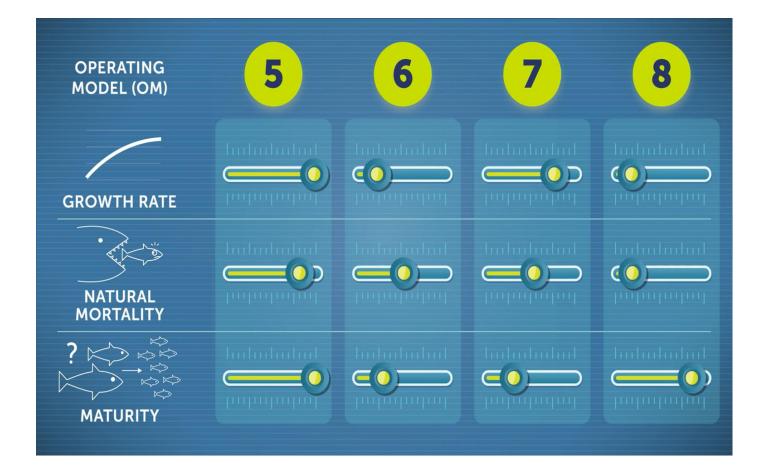
• Fishery-dependent information – CPUEs


No	Fleet	Area (East, Med, West)	Country	2017	2018	2019	2020
1	LLOTH	Med	all others except Japan	1183.780	1809.660	2068.916	2310.204
1	LLOTH	East	all others except Japan	303.116	344.944	471.857	548.716
1	LLOTH	West	all others except Japan	223.705	288.546	288.546	288.546
18	LLJPN	East	Japan	1910.610	2279.000	2528.000	2801.000
18	LLJPN	West	Japan	345.827	407.480	407.480	407.480
4	BBnew	East	France and Spain in Bay of Biscay	867.174	1063.048	1176.124	1298.459
7	PSMEDnew	Med	All PS except Croatia in Med	13883.699	16293.163	18652.732	20837.709
8	PSNOR	Med	Norway	47.140	97.782	224.711	282.064
9	PSHRV	Med	Croatia	586.634	687.673	760.820	839.954
11	PSWnew	West	USA,Canada	0	0	0	0
13	TPnew	East	Spain,Morocco and Portugal	3362.447	4141.503	4616.081	5118.636
14	RRCan	West	Canada	344.120	427.690	427.690	427.690
15	RRUSAFS	West	USA	197.541	261.130	261.130	261.130
16	RRUSAFB	West	USA	597.108	878.632	878.632	878.632

• Fishery- independent information:


	Туре
1	French aerial survey past
2	French aerial survey recent
3	Western Med Larval survey
4	Canadian acoustic survey
5	USA Larval survey
6	Aerial survey – GBYP*


• E-TAGs for Spatial Transitions


• NOAA, DFO, WWF, AZTI, UNIMAR, IEO, UCA, FEDERCOOPESCA, COMBIOMA, GBYP, IFREMER, Stanford University: 1307 tags, 598 tag transitions

- Stock of Origin data from :
 - OTOLITHS MICROCHEMISTRY
 - GENETICS
- Others
 - Length-comp
 - Total catch
 - Index of SSB

BFT MSE – OM: Uncertainty axes

BFT MSE – OM: Uncertainty axes

Factor:	Recruitment	
	Western stock	Eastern stock
level 1	B-H with h=0.6 ("high R0") switches to h = 0.9 ("low R0") starting from 1975	50-87 B-H h=0.98 switches to 88+ B-H h=0.98
level 2	B-H with h=0.6 fixed, high R0	B-H with h=0.7 fixed, high R0
level 3	Historically as in level 1. In projections, "low R0" switches back to "high R0" after 10 years	Historically as in level 1. In projections, 88+ B-H with h=0.98 switches back to 50-87 B-H with h=0.98 after 10 years
Factor:	Spawning fraction/Natural mortality rate for	both stocks
level A	Younger spawning (E+W same)/High natura	al mortality
level B	Older spawning (different for the 2 stocks)/	'Low natural mortality (with senescence)
Factor:	Scale*	
	West area	East area
level	15kt	200kt
level - +	15kt	400kt
level +-	50kt	200kt
level ++	50kt	400kt
Factor:	Length composition weighting in likelihood	
level L	0.05	
level	1	
Н		

Reference Grid: 48 OMs

BFT MSE – OM: Uncertainty axes

Length Comp Wt				I	-			
Scale	-	-	-	·+	+		+	+
Spawn. Frac. / M	А	В	А	В	А	В	А	В
Recruitment: 1	OM_1	OM_4	OM_7	OM_10	OM_13	OM_16	OM_19	OM_22
Recruitment: 2	OM_2	OM_5	OM_8	OM_11	OM_14	OM_17	OM_20	OM_23
Recruitment: 3	OM_3	OM_6	OM_9	OM_12	OM_15	OM_18	OM_21	OM_24
Length Comp Wt				ŀ	1			
Scale	-	-	-	+	+		+	+
Spawn. Frac. / M	А	В	А	В	А	В	А	В
Recruitment: 1	OM_25	OM_28	OM_31	OM_34	OM_37	OM_40	OM_43	OM_46
Recruitment: 2	OM_26	OM_29	OM_32	OM_35	OM_38	OM_41	OM_44	OM_47
Recruitment: 3	OM_27	OM_30	OM_33	OM_36	OM_39	OM_42	OM_45	OM_48

BFT MSE – OM: Robustness test

Priority Robustness test description

1

2 3

4

5

6

7

8

9

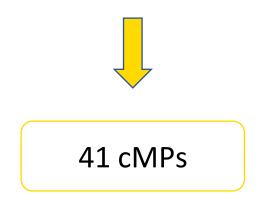
10

11

Western stock growth curve for eastern stock.

- Catchability Increases. CPUE-based indices are subject to a 2% annual increase in catchability in the future. Unreported overages. Future catches in both the West and East areas are 20% larger than the TAC as a result of IUU fishing (not known and hence not accounted for by the CMP).
 - High western mixing. The old mixing axis factor level 2: 20% western stock biomass in East area on average from 1965-2016.
 - 'Brazilian catches'. Catches in the South Atlantic, including relatively high takes during the 1950s and 60s, are reallocated from the western stock to the eastern stock.
 - Time varying mixing. Eastern stock mixing alternates between 2.5% and 7.5% every three years.
 - Non-linear indices. Hyperstability in OM fits to data is simulated in projection years for all indices.
 - Persistent change in mixing. Eastern mixing increases from 2.5% to 7.5% after 10 years.
 - Varying time of regime change in R3.
 - Intermediate parameter levels for M, growth, maturity, scale, regime shifts.
- Zero eastern stock mixing. No Eastern stock in the West area.
- 12 Upweight US_RR_66_144

BFT MSE – OM: Plausibility weighting


- Delphi approach
- through an online Poll (deadline February 14th)
- Poll characteristics:
 - Blind
 - Reflecting authorship
 - Default score for levels within an axis, and justification required when differing from it.
- Eligible participants: restricted to the attendees of 2020 December BFT meeting
- recruitment level R3 was considered less plausible than the other two R levels
- Process in standby

BFT MSE – The Management Procedure(s) – MP / Harvest Strategies (HS)

Simulates different proceses:

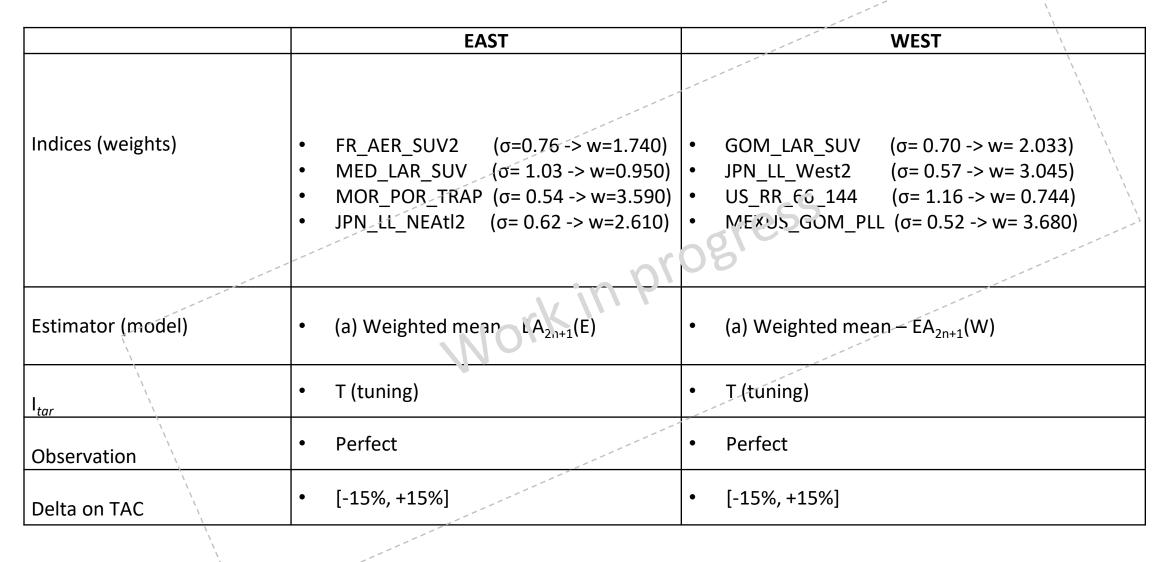
- Data collection: observation model
- Assessment: Estimation/assessment model status estimator
- Advice: Harvest Control Rules (HCR)
- Implementation.

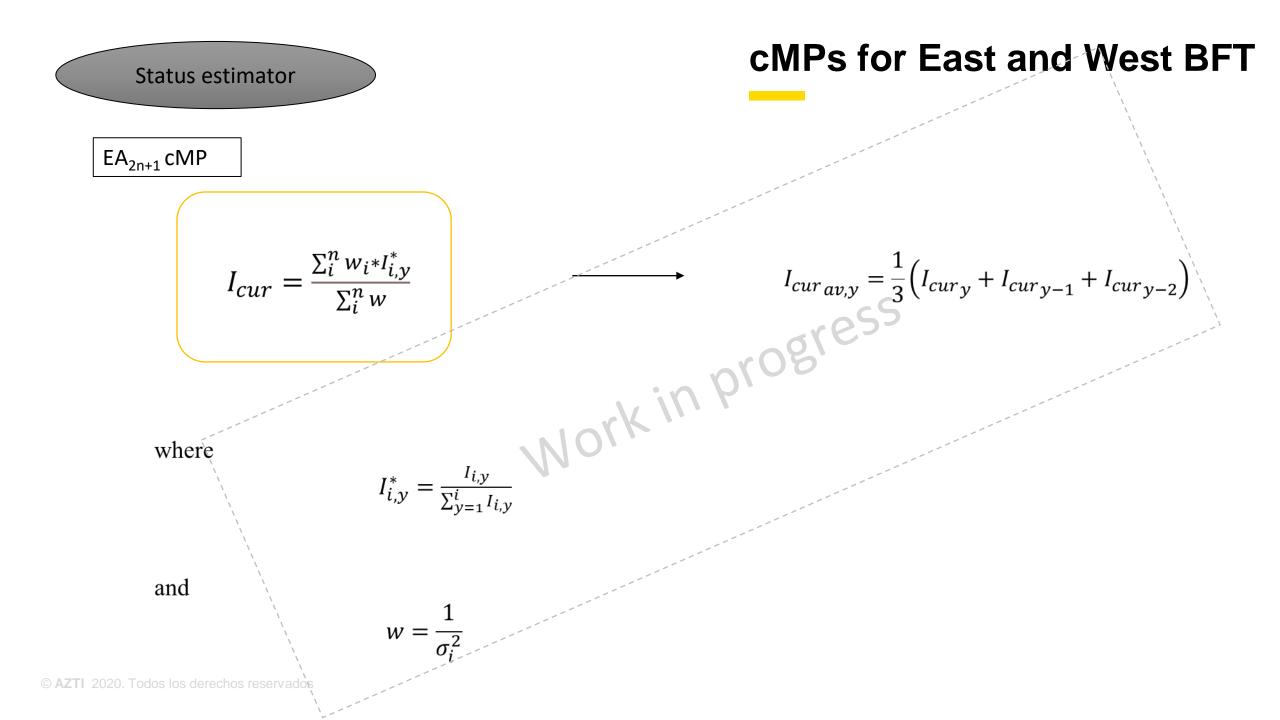
BFT MSE – The Management Procedure(s) - MP

СМР	Status estimator	Summary of HCR	References
AH	Biomass estimate calculated via larval indices and the associated catchability estimates.	TAC is a product of biomass estimate and F0.1 estimate.	SCRS/2020/144; SCRS/2021/122
AI	Spawning and vulnerable biomass for each stock in each area are estimated by an artificial neural network.	Regional biomass fished at a fixed harvest rate. Uses CAPs, bottoms and variable TAC changes.	SCRS/2021/028
BR	Weighted average of index J is used directly for each area, where weights are inverse variances (adjusted for autocorrelation) for each individual data series	TACs set using a relative harvest rate (Catch/J) from a reference year (2018) applied to the 2-year lagged moving average of the weighted index J. Quadratic decline in reference HR multipliers when J is below a nominated level.	SCRS/2021/121
EA	Similar to BR, using a weighted average of index Icur.	Adjust TAC by ratio between Icur a target value T.	SCRS/2021/032; SCRS/2021/P/046
HA	TAC is based on trend in indicator and biomass of a second indicator	Current index value relative mean of recent 3 years represents the harvest rate applied to the biomass estimated for a second indicator.	SCRS/2021/122
LW	No biomass/stock status estimation, larval surveys used directly	Current relative HR is compared to the reference period relative HR, and TAC is adjusted based on their ratio.	SCRS/2020/129

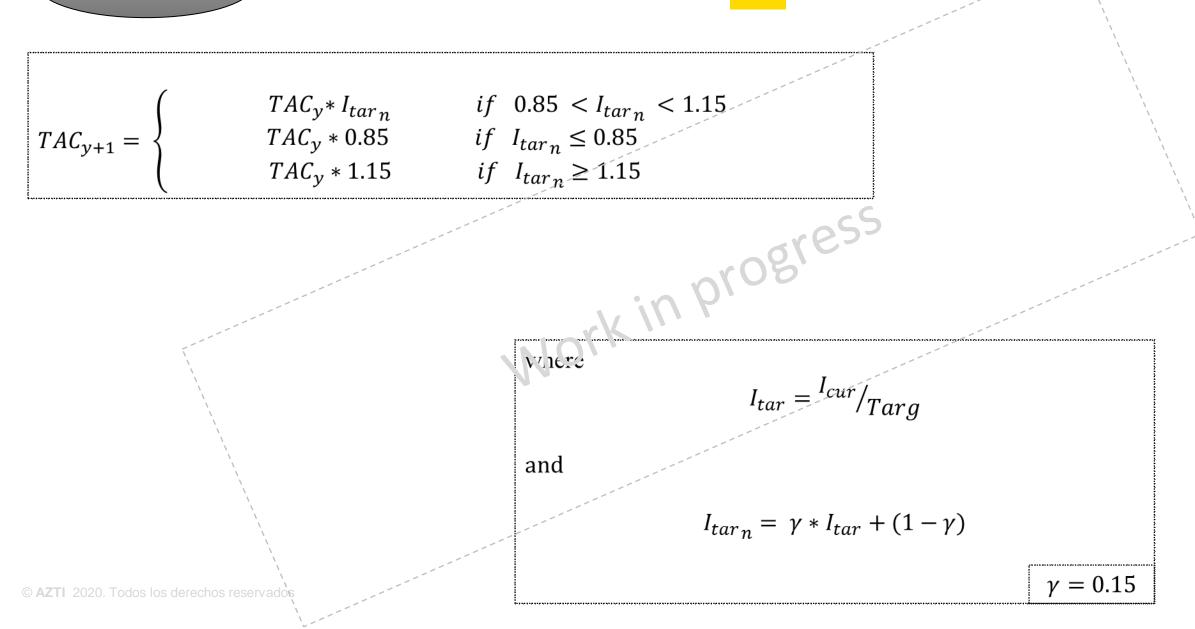
BFT MSE – The Management Procedure(s) - MP

СМР	Status estimator	Summary of HCR	References
ND	No estimate used, just trends on indices.	TAC is updated using recent trend in indicator with restrictions on increase limited to 20%.	SCRS/2021/122
PW	No biomass estimate is used	Current relative HR is compared to the reference period relative HR, and TAC is adjusted based on their (delta) ratio.	SCRS/2020/129
SP			
тс	SSB and vulnerable B are estimated by averaging the available indices for the stock/area combination after scaling by 2016 estimates catchability.	TACy=TAC (y-1) but depending on F/Fmsy and B/Bmsy.Uses CAPs, bottoms and variable TAC changes.	SCRS/2020/150, SCRS/2020/165
TN	Uses ratio Iratio of recent and lagged moving averages of indices to determine relative stock status	TAC calcualted based on the JPN_LL moving average, unless drastic drop of recruitment is detected by US_RR index.	SCRS/2020/151; SCRS/2021/041


BFT MSE – Statistical indicators for performance

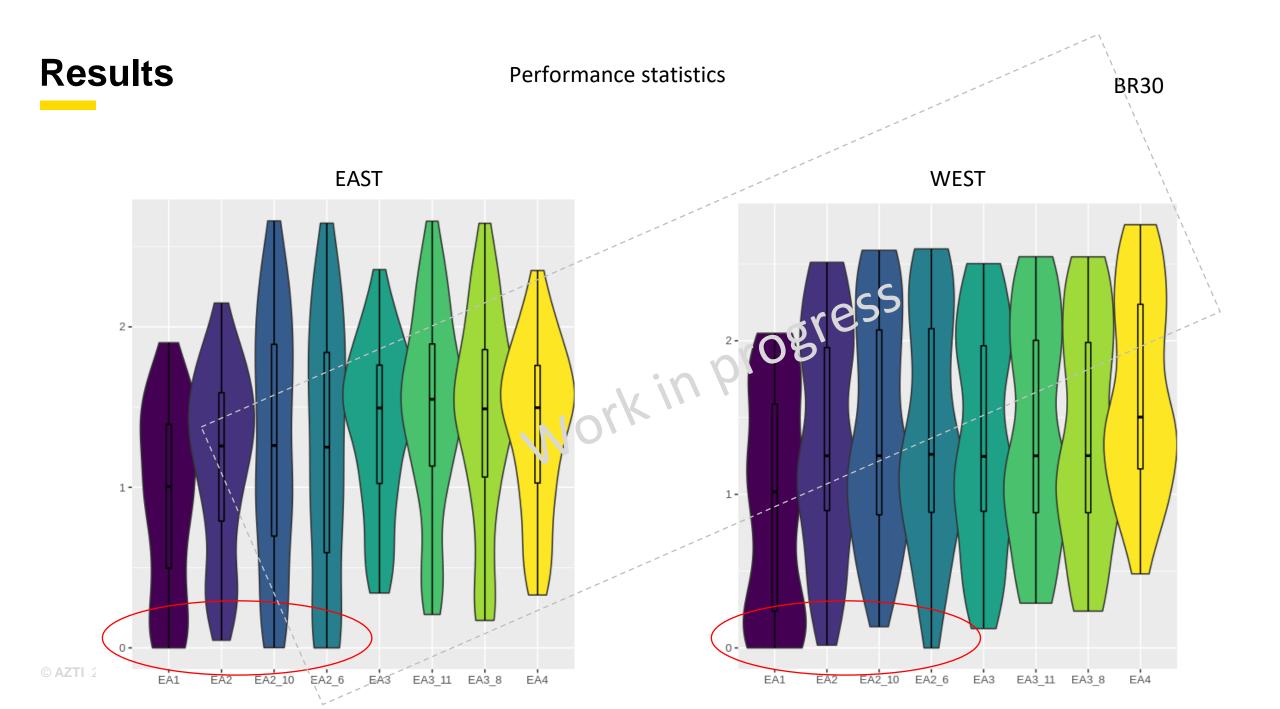

1	AvC10	Mean catches over first 10 projected years
2	AvC30	Mean catches over first 30 projected years
3	C10	Mean catches over the first 10 projected years
4	C20	Mean catches over projected years 11-20
5	C30	Mean catches over projected years 21-30
6	D10	Depletion (spawning biomass relative to dynamic B0) after the first 10 projected years
7	D20	Depletion (spawning biomass relative to dynamic B0) after projection year 20
8	D30	Depletion (spawning biomass relative to dynamic B0) after projection yeare 30
9	LD	Depletion (spawning biomass relative to dynamic B0) all projected years
10	DNC	Relative SSB (SSB relative to zero fishing) in final projection year
11	LDNC	Relative SSB (SSB relative to zero fishing) over all projection years
12	POS	Probability of Over-Fished status (B <bmsy) 30="" after="" projected="" td="" years<=""></bmsy)>
13	AAVC	Average Annual Variability in Yield over the first 30 projection years
14	AvgBr	Average Br (spawning biomass relative to dynamic SSBMSY) over projection years 11-30
15	Br30	Depletion (spawning biomass relative to dynamic BMSY) after projection yeare 30
16	PGT	Probability Good trend: 1 minus probability of negative trend (Br31 – Br35) and Br30 is less than 1

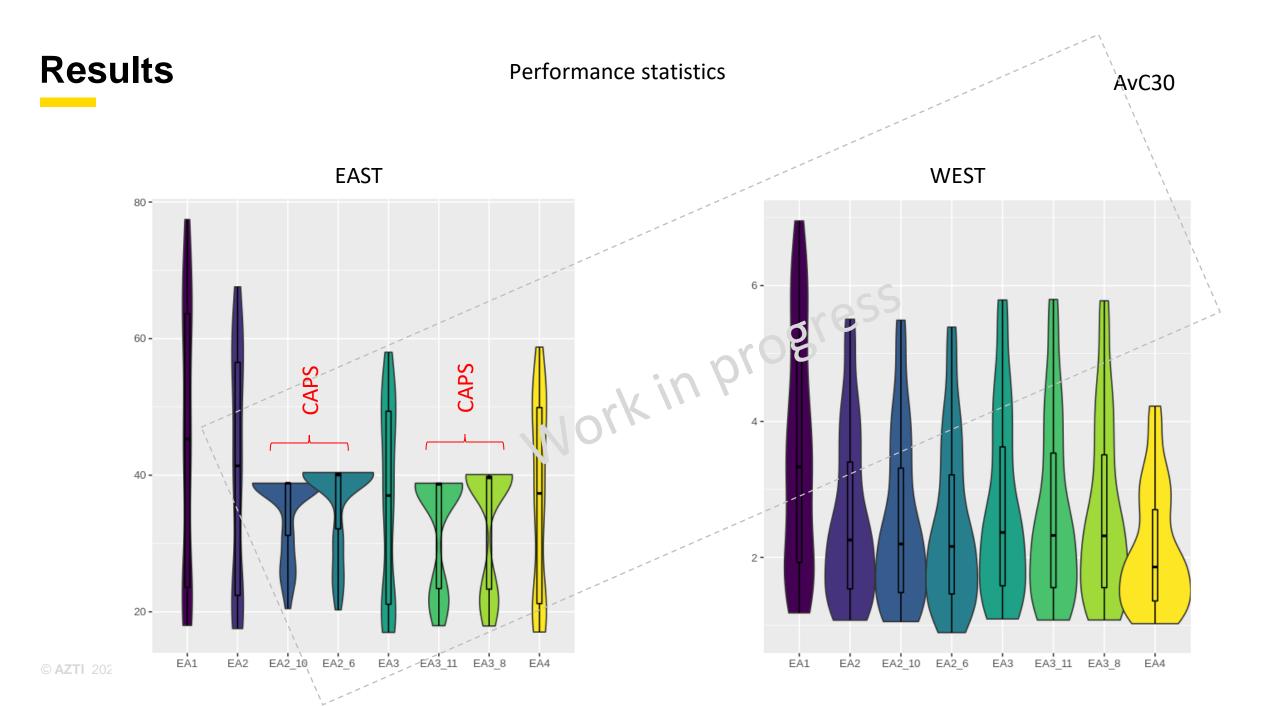
'EA' cMPs – updated progress

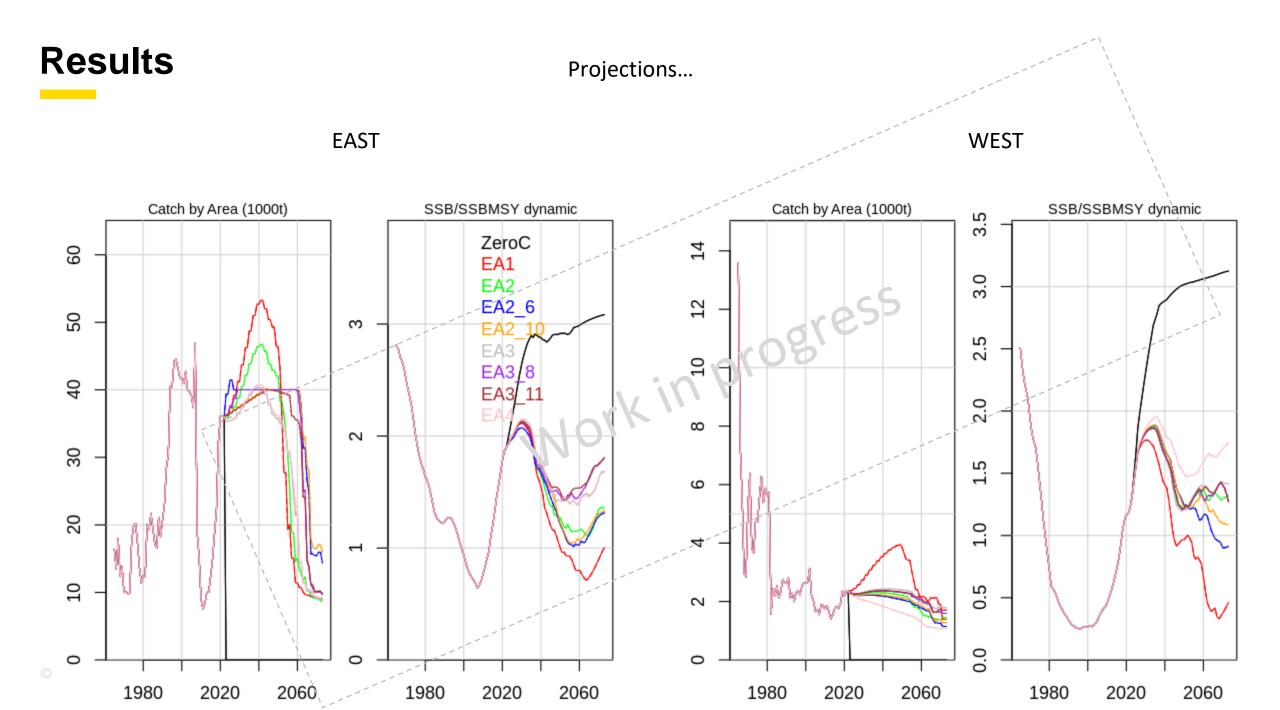

Andonegi E., Arrizabalaga H., Rouyer T., Gordoa A. and Rodriguez-Marín, E.

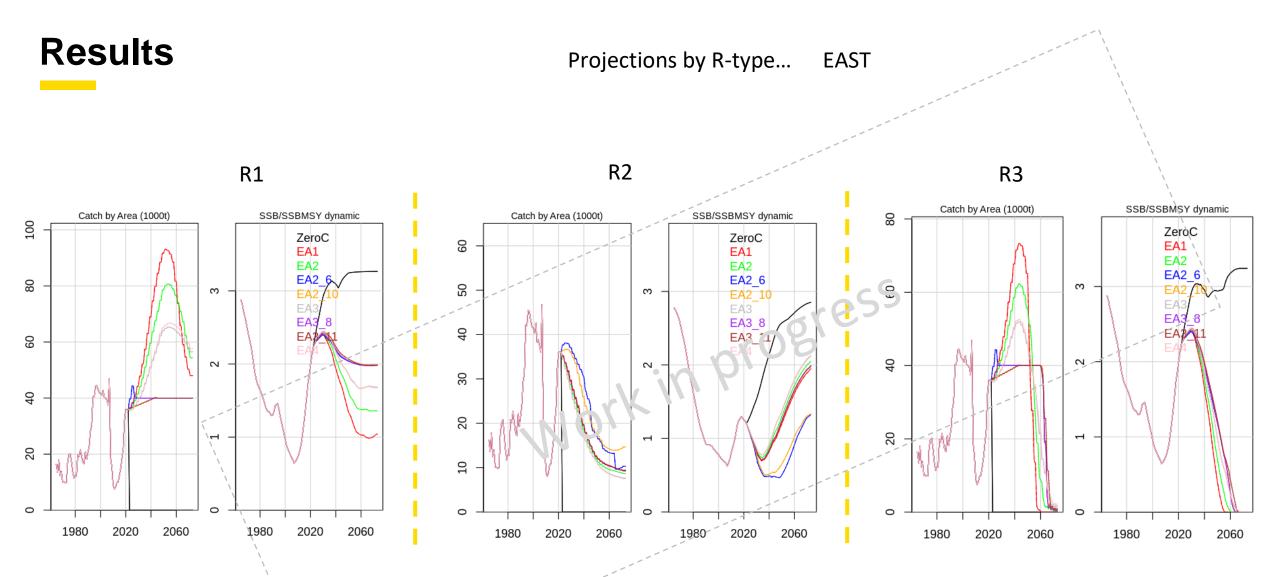
cMPs for East and West BFT

HCR

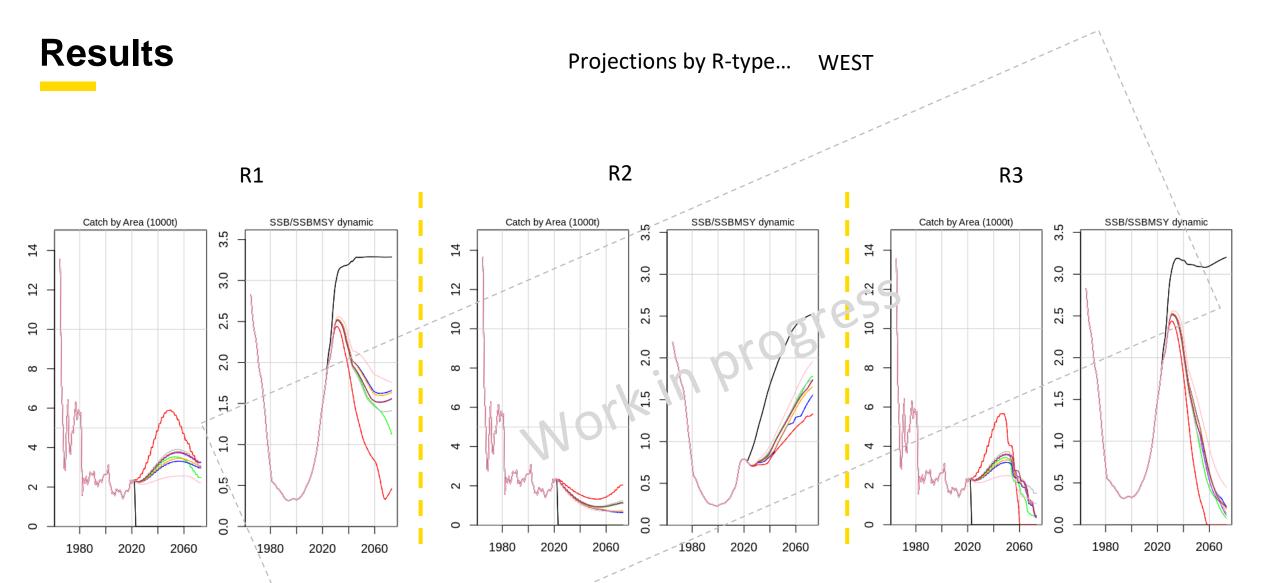

Management objectives

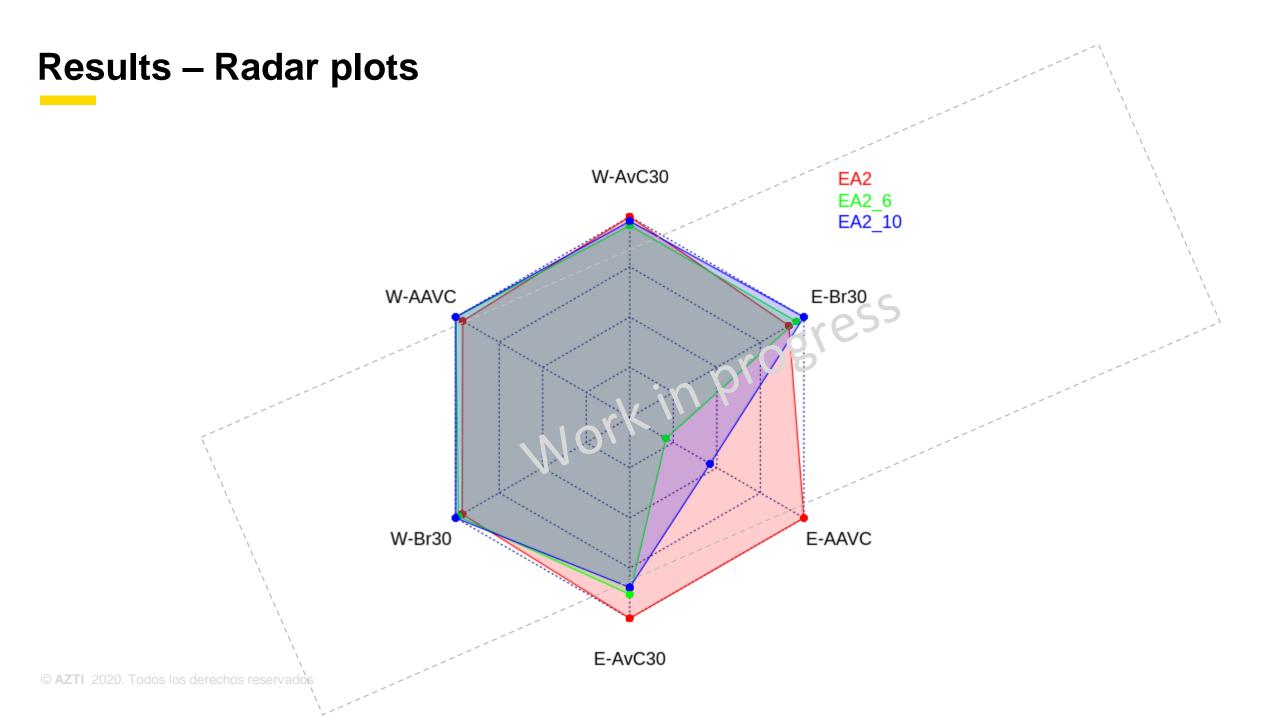

Br30 levels		CMP tuning options (values are given in the order of West- East)	cMPs	
Western	Eastern	Paired plus (n=4)	EA	
1.00	1.00	1.00 - 1.00	EA1	S
		1.25 – 1.25	EA2, EA2_6, EA2_10	
1.25	1.25	1.25- 1.50	EA3. 5A3_9, EA3_11	
1.50	1.50	1.50 – 1.50	EA4	

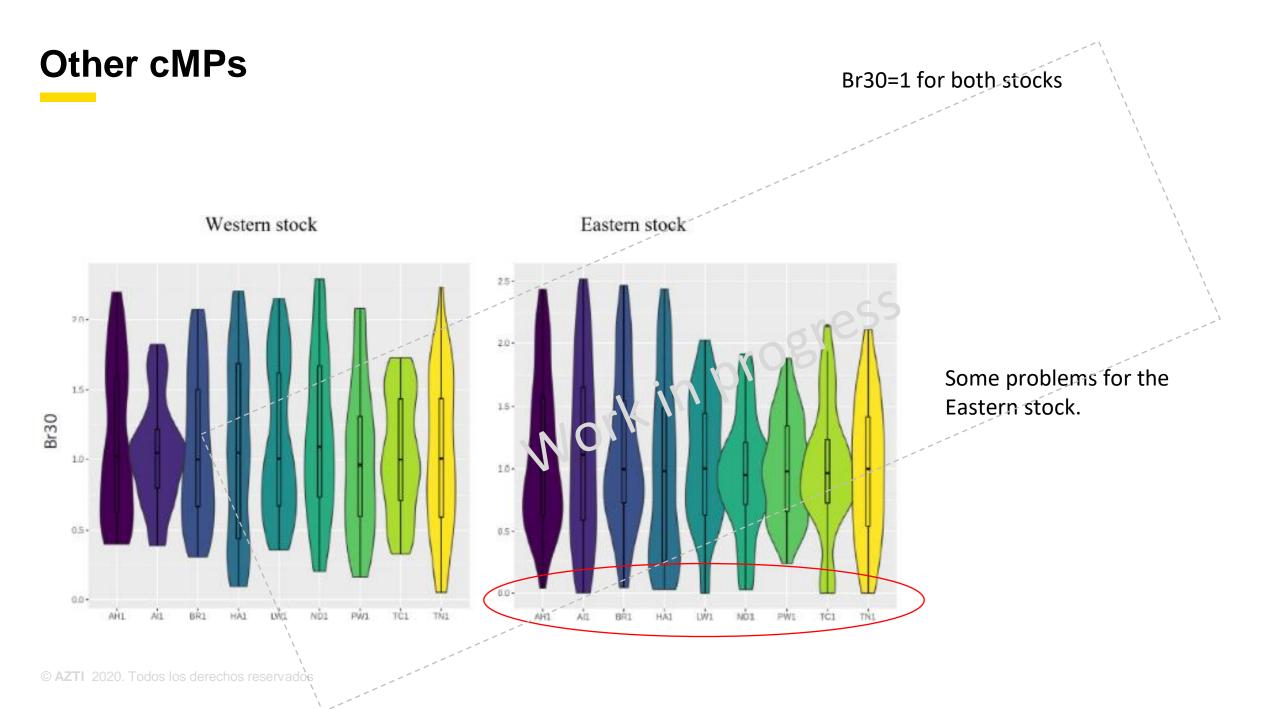

© AZTI 2020. Todos los derechos reservados


EA1	EA_1 is CMP that uses weighted mean, tuned to Br30_W=1 & BR30_E=1
EA2	EA_21s CMP that uses weighted mean, tuned to Br30_W=1.25 & BR30_E=1.25
EA2_6	EA_6 is CMP that uses weighted mean, with CAP in 40000, tuned to Br30_W=1.25 & BR30_E=1.25
EA2_10	EA_10 is CMP that uses weighted mean, with CAP in 40000, with lower TAC variation above 20000, tuned to Br30_W=1.25 & BR30_E=1.25
EA3	EA_3 is CMP that uses weighted mean, tuned to Br30_W=1.25 & BR30_E=1.50
EA3_8	EA_8 is CMP that uses weighted mean, with CAP in 40000, tuned to Br30_W=1.25 & BR30_E=1.50
EA3_11	EA_11 is CMP that uses weighted mean, with CAP in 40000, with lower TAC variation above 20000, tuned to Br30_W=1.25 & BR30_E=1.50
EA4	EA_4 is CMP that uses weighted mean, tuned to Br30_W=1.50 & BR30_E=1.50
	EA2 EA2_6 EA2_10 EA3 EA3_8 EA3_11

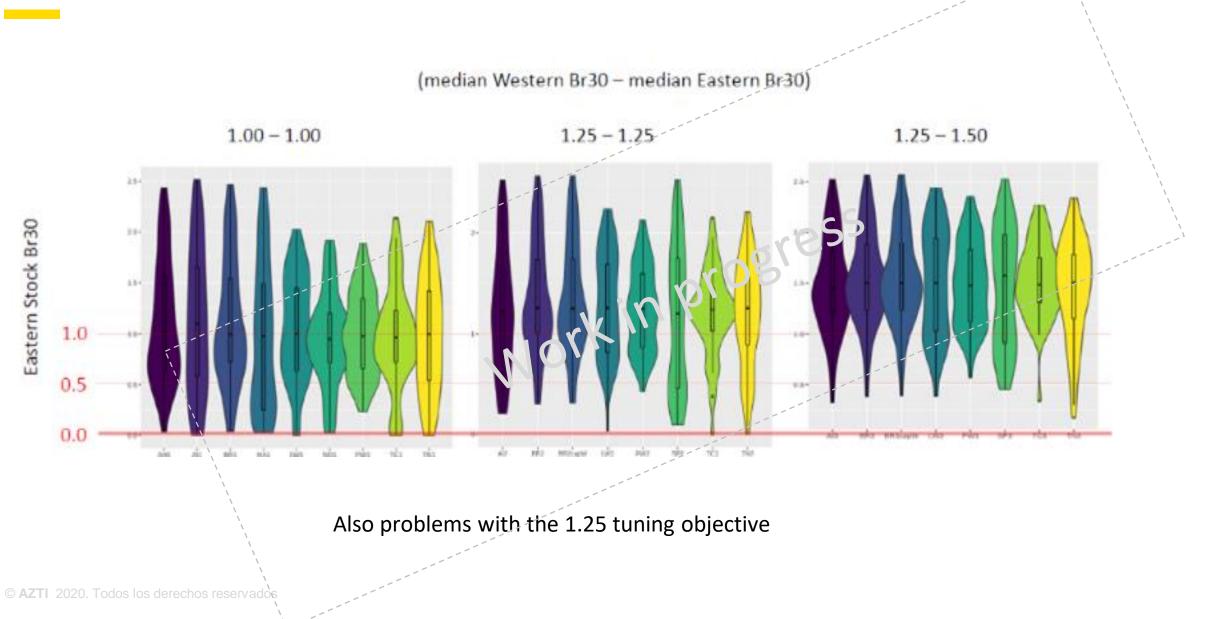
Results			Perforn	nance statistics				
	EAST					WEST		
	Br30 Av	vC30	AAVC			Br30 Av	C30 A	AVC
EA1	1.01	45.3	-7.54		EA1	C 1.02	3.33	6.11
EA2	1.26	41.37	6.54		EA2	1.25	2.26	5.37
EA2_6	1.25	40.02	0		EA? p	1.26	2.16	5.68
EA2_1	0 1.26	38.83	1	in P	EA2 10	1.25	2,2	5.67
EA3	1.49	37.02	5.61	rk	EA3	1.25	2.37	5.78
EA3_8	1.49	39.62	C	01.12	EA3_8	- 1.25	2.32	5.54
EA3_1	1 1.55	38.66	1		EA3 11	1.25	2.32	5.63
EA4	1.5	37.33	5.75		EA4	1.5	1.86	4.95







Recruitment axis still most important influence on CMP biomass and yield performance.



Recruitment axis still most important influence on CMP biomass and yield performance.

Other cMPs

Other cMPs - ranking

		West an	ea / weste	rn stock	East an	ea / Faster	n stock		
		westar	cu / weste		Lastan	East area / Eastern stock			
CMP	Mean	AvC30	AAVC	Br30 5%	AvC30	AAVC	Br30 5%		
Costs C	Ranking	0.00	0.00	1.94	0.00	0.00	2.51		
Br30 1.25 -	1.50 (Wester	m - Eastern) a	levelopme	nt tuning					
AI3	2.3	3.33	6.70	0.84	39.71	0.00	0.66		
BR3	4.2	3.27	11.24	0.64	38.16	1.52	0.79		
BR3capW	4.8	2.93	10.43	0.00	38.11	1.35	0.80		
LW3	5.5	2.89	6.05	().75	33.77	12.41	0.83		
PW3	5.2	3.17	7.18	0.46	37.94	10.85	0.96		
SP3	5.2	3 12	2.17	0.57	36.65	1.63	0.65		
TN3	5.7	3.20	8.86	0.18	39.48	10.69	0.49		
TC3	3.7	3.36	6.70	0.65	37.16	7.42	1.01		
Br30 1.50 -	1.50 (Wester	rn - Eastern) a	evelopme	nt tuning					
AI4	1.8	2.99	6.28	0.98	39.69	0.00	0.66		
BR4	4.0	2.51	9.86	0.86	38.14	1.32	0.80		
LW4	4.7	2.16	5.60	0.83	34.00	12.36	0.83		
PW4	4.2	2.53	8.41	0.68	38.28	10.93	0.96		
SP4	5.2	2.50	15.52	0.81	36.97	1.27	0.66		
TN4	4.7	2.90	8.98	0.34	39.68	10.87	0.50		
TC4	3.2	2.77	7.24	0.83	37.17	7.58	1.02		

https://harveststrategies.org/what-are-harveststrategies/glossary/

Eskerrik asko Gracias Merci Thanks

